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Abstract. Closed time-like loops on space-time manifolds are discussed with a view to 
finding out whether time-machines exist. I t  is shown that a three-surface associated with 
causality violation, the ‘time-machine boundary’, has topology T 2  X R’. This torus begins 
its existence as a singular closed null geodesic (Cl), in agreement with a result due to Tipler. 
Null curves close to C ,  carry off angular momentum to future null infinity, and i t  is 
speculated that this radiation process damps the rotation of a system to below the critical 
angular momentum at which causality violation occurs. 

1. Introduction 

One of the worrying aspects of relativity is that many of the exact solutions to the field 
equations admit of closed time-like loops. These world lines would represent the path 
of an object which is able to meet its previous and future self. In  particular, the rotating 
black hole Kerr solution (Carter 1968) and the vacuum exterior of an infinitely long 
rotating cylinder (Tipler 1974) both violate causality in this way. This suggests that a 
finite rotating object, if spun sufficiently rapidly, would act as a time-machine. 

It is generally agreed that physical space-time should not violate causality, and so 
the question we are asking is: ‘How far is relativity prepared to go in dismissing 
time-machines?’ The answer should be regarded as a reflection upon the powers and 
weaknesses of the methods used in relativity, not as a statement as to whether 
time-machines exist-physics must already assume that they do not. 

Tipler (1976) has shown that a singularity will generically be associated with 
time-machines, provided we are not inside a black hole. He therefore invokes the 
‘cosmic censorship’ hypothesis and suggests that causality violation will be restricted to 
the interior of an event horizon. This hope might seem to be supported by the fact that 
time-like loops on the Kerr solution are indeed inside the hole under reasonable 
conditions. 

However, the displeasing nature of time-machines is independent of their location, 
and so the ‘cosmic censorship’ hypothesis is not sufficiently powerful to solve the 
problem; what we require is a simple causal explanation as to why time-machines will 
not come to exist. In this paper we show that a rotating object will radiate an unlimited 
amount of angular momentum to future null infinity when causality violation is 
imminent, and this is interpreted as a simple (albeit imprecise) reason for the non- 
existence of time-machines. 
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2. Time-machine boundaries 

We can isolate the causality violating parts of a manifold with a causality horizon, so that 
all closed time-like curves are wholly contained within this horizon. A more interesting 
three-surface, it turns out, is the ‘time-machine boundary’, which has the defining 
property that it encloses the smallest region of the manifold in which every loop is at 
least partly contained. 

Typically this is equivalent to a more useful definition: The time-machine boundary 
is that closed three-surface which divides the manifold into an interior and an exterior 
so that the exterior is the largest submanifold on which the stable causality condition 
holds.’ (See Hawking and Ellis 1973, p 198, to be referred to as HE). 

The best example of a time-machine boundary is provided by the Kerr metric, on 
which every loop is at least partly contained within the surface defined by g&$ = 0, 
where 4 is a killing azimuthal angle coordinate in the Boyer-Lindquist system (Carter 
1968). This surface ( rT)  is a torus for each value of the time-coordinate (9 and so in this 
case the time-machine boundary has topology T 2  x R’. This proves to be true 
generally. 

Theorem. A compact time-machine boundary has topology T 2  x R 
represents a line-segment). 

(where R ’ 

Proof. The stable causality condition holds on the exterior submanifold, hence, by HE, 
Q 6.4.9, p 198, there is afunctionfon the exterior whose gradient is time-like. Since the 
exterior is the largest such submanifold then the gradient of a suitably differentiable f is 
null on the time-machine boundary. 

The perpendiculars to the gradient off lie in the surface f = constant, and as we have 
a Lorentz signature on M then there is one and only one null vector in f = constant at 
the time-machine boundary. We show that this vector (c) is tangent to the time-machine 
boundary. The intersection of the time-machine boundary and a three-surface f = 
constant is a closed compact two-surface ( T ) .  Set up local pseudo-orthonormal 
coordinates (ax”) at some point P in T, so that a/ax’ and a/ax2 are tangent to T, a/ax3 is 
perpendicular to T in f = constant and a/ax4 is parallel to the gradient off. Suppose c is 
not tangent to T, then a/&’  and a/&* must be space-like, and there is a combination 
AaJax3+Ba/ax4 which is also space-like. The volume element described by these 
three space-like vectors provides a way of extending f = constant while keeping the 
gradient of f time-like. This is not possible by HE, Q 6.4.9, and so c is tangent to T. 

At each point of T there is a null vector tangent to T, and so there is a continuously 
defined vector field on T. This implies that the Euler characteristic of T is zero and so T 
is either a torus or a Klein bottle. Since M is both space and time orientable T is a torus. 

By taking T for each value of f ,  we arrive at the topology T 2  x R ’, the result being 
independent of the topology of M. 

3. The torus 

A torus has the property that two independent vector fields may be defined on it, 
whereas we have used only one. Thus we can associate a winding number W with the 
null curve on T, which gives the number of twists the curve makes in moving once 
around T. W is a topological quantity which changes as f increases, so that typically W 
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is irrational and we have the pleasing (but useless) result that the typical torus is 
generated by one null curve. This curve will not in general be geodesic. 

If the torus does not exist for all time (as it  does in the Kerr case) then it commences 
its existence on some three-slice f = fo. On fo T will be a circle (C,) generated by one 
closed null curve. (This is only so if M is sufficiently devoid of symmetries, but this is no 
restriction for what follows.) Similarly the torus ends its existence as a null curve (C2)on 
some f greater than fo. We are concerned with the curve C1. 

Theorem. C1 is a null geodesic. (Similarly for C,.) 

Proof. Suppose C1 is not geodesic, then, by HE, 9: 4.5.10, p 112, there is a time-like curve 
between any two points of C1. This curve intersectsf=fo both towards the future and 
to the past and so a continuous choice of the orientation of the future null cone cannot 
be made on fo. C1 is geodesic. 

Theorcm. If the weak energy condition and the generic condition hold on C1, then C1 is 
incomplete. 

Proof. If the conditions hold and C,  is complete then use HE, $9: 4.4.5 and 4.5.12 to 
show that there would be a time-like curve between two points of C,. This is 
impossible, again, so C,  is incomplete. 

This is an extension of Tipler’s result that there is a singularity associated with 
time-machines-the extension being that the result is true inside black holes. We might 
therefore conclude that in a collapse to a Kerr solution the torus rT breaks off from the 
ring singularity-that is, that the singularity is formed before the manifold becomes 
causality violating. This, I think, would be incorrect; we wish to be rid of time-machines 
not to provide a description of how they come about in ‘realistic’ situations. Instead we 
ask what type of singularity makes C,  incomplete. There are two possibilities-a scalar 
polynomial singularity or a parallelly propagated singularity. 

As discussed by Hawking and Ellis (HE, p 190 and chapter 8) a scalar polynomial 
singularity is a point removed from M where some scalar measure of curvature 
diverges, and a parallelly propagated singularity arises in connection with a closed null 
geodesic. If we parallelly propagate the tangent vector to C1 (a/aV) around C1 it 
becomes (a/a V)’ so that 

@/a V)’ = a @/a V ) .  (1) 
This has consequences for the affine distance on C1, so that C1 is future incomplete if 
a > 1, and past incomplete if a < 1 being complete only if a = 1. 

I shall take the view that the singularity on C1 is a parallelly propagated singularity, 
for the following reasons. Primarily, there is no good reason why there should exist a 
scalar polynomial singularity on C1; there is no obvious cause for a divergent curvature 
scalar, whereas the black hole singularity theorems, for example, do suggest intense 
fields in that there exists a closed trapped surface on M. Thus it would seem to demand 
chance to get a scalar polynomial singularity on C,. 

Secondly, examine the factor a. From the geodesic equation 

we may redefine a ; 
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Let a/ax4 be parallel to a/aV on C1, a/ax3 is the perpendicular future null vector 
(the gradient o f f )  and a/ax' and a/ax2 are perpendicular unit space-like vectors. 

Au4 = --Ic, r4, u4  dx4 and Au4 = (U - l )u4 (3 1 

Au', A u 2  and Au3 are, of course, zero, but imposing this restriction does not restrain 
Au4, so that typically a will not be unity; that is, we already expect the typical closed null 
geodesic to be incomplete without invoking scalar polynomial singularities-the set of 
complete closed null geodesics is of measure zero on the set of all closed null geodesics. 

Accepting that C1 is parallely propagated incomplete the problem is to find the 
value of a and the consequences of this value. 

Using the above definition of a we see that a curve which is arbitrarily close to C1 
(for all values of its affine parameter in the incomplete direction) will also suffer from the 
same incompleteness-the factor a is a property of the local space-time near C1, not 
just a property of C1. Thus, a null geodesic generator of j'(Cl) will be past incomplete 
if a < 1. Such geodesics are, in fact, those considered by Tipler, and he showed that they 
are indeed past incomplete, suggesting that a on C1 is less than one. However, a result 
of Hawking and Ellis (HE $6.4.4.)  shows that if C1 exists then it  must have a greater 
than one; ('If C is a future incomplete closed null geodesic then there is a variation of 
this curve to the future which yields a closed time-like curve.') 

The view here is that C1 does not exist and therefore j'(Cl) does not exist and so we 
must compute a via equation (3) .  

The metric near C1 is approximately 

d s 2 =  - 2 d ~ ~ d x ~ + d x ' ~ + d x ~ '  (4 ) 

independent of the existence of C1, so that 

since derivatives in direction a/ax4 are roughly zero. g4,,, is less than zero near C1 and 
so a is greater than one. 

4. That C, should not exist 

Suppose that the geometry has developed up to somef just less thanfo, so that there is a 
closed space-like curve (C,) arbitrarily close to some fictitious C1. We want to know 
whether the geometry will develop so that Cl will come to exist. There are null curves 
close to C, which are not closed-they violate the strong causality condition, but not the 
stable causality condition. These null curves can be treated as neighbours of the 
hypothetical C1, and we can use the equation of geodesic deviation to find out if they 
remain close to C1, and thus suffer from the same future incompleteness as C1, or 
whether they diverge from C1. 

b" is the separation vector between C1 and a nearby (and existent) null curve. At 
some point ab"/aV is zero. 
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Integrating twice; 

Db"  =-/I RapySby dx' dxs  

where the integration is taken around C1 an infinite number of times. To a first 
approximation the quantity b y  can be considered a constant so that, t o  the next 
approximation, Db"  diverges. That is, the null curves initially close to and roughly 
parallel t o  C, leave the locality of C, after a finite affine distance-they d o  not suffer 
from the same future incompleteness as C1. 

Consider the momentum (p) of a photon on one  of these null curves; 

r7 
p = - - = u  av ' 

So long as the curve stays near C1, then U '  = au and p '  = up which shows that the 
momentum of a photon can become arbitrarily large before i t  radiates away to  future 
null infinity. Thus, some measure of the angular momentum of the photon also 
becomes unbounded, and this angular momentum is also radiated to future null infinity. 

Conservation theorems tell us that the asymptotic measure of angular momentum is 
constant, and so the angular momentum of the rotating system can only decrease. 

5. Conclusion 

Objects which are rotating sufficiently rapidly to be on the verge of violating causality 
tend to radiate angular momentum in unlimited quantities. This is perhaps the reason 
why time-machines d o  not come to exist. 

More complete calculations could certainly be done using particular models of 
time-machines, although it might prove more difficult to arrive at general theorems 
about the immediate effects of the radiation. 
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